From 1 - 7 / 7
  • <div>This is for submission to the 2022 ICCE Conference: https://icce2022.com/</div> This Abstract was submitted/presented to the 2022 International Conference on Coastal Engineering (ICCE) 04-09 December (https://icce2022.com/)

  • <div>This user guide accompanies the Groundwater Data Return Template (D2023-55964). The template is designed to make it easier for GA scientists to provide hydrochemistry and geochemistry information back to farmers and other landholders from the bores on their land or area of interest. It is designed to provide non-technical stakeholder information about what the parameters mean and also only the subset of data they are most likely to be interested in. The template can be expanded to include other parameters if required, and parameters can be deleted from the template if the data is not available or relevant.</div>

  • <div>In the present study, nanoscale organic-iron complex (NO-Fe) was used as an enhancement factor by two different <em>Rhodopseudomonas</em> species of purple non sulphur bacteria (PNSB) to produce hydrogen (H2). The NO-Fe complex was synthesised using <em>Eucalyptus viminalis</em>-a native Australian plant leaf extract, and FeSO4.7H2O salt. This NO-Fe complex was used as an iron source for newly isolated <em>Rhodopseudomonas palustris</em> MP3 and <em>Rhodopseudomonas harwoodiae</em> SP6 strains of photo-fermentative bacteria to produce H2.&nbsp;FeSO4.7H2O&nbsp;was also used as a source of iron for comparison with the NO-Fe complex. The photofermentative bacterial cultures were isolated from a fishpond, and only two strains, MP3 and SP6, were found viable after several attempts of quadrate streaking. After phylogenetic analysis, these strains were designated as <em>R. palustris</em> MP3 and <em>R. harwoodiae </em>SP6. The results showed that the <em>R. palustris</em> MP3 strain manifested approximately 70 % higher performance to the NO-Fe complex (FeEx1:2 and FeEx2:1), with an increase in H2 production compared to ferrous salt. The best performance was achieved by both strains when NO-Fe complex FeEx1:2 was supplemented in the fermentation broth at 10 mg/L concentration. The highest production of H2 was observed by <em>R. palustris</em> MP3 (10.7 ml/L) compared to <em>R. harwoodiae</em> SP6 (10 ml/L) when NO-Fe complex FeEx1:2 was used as an iron source. The study revealed that <em>R. palustris</em> MP3 and <em>R. harwoodiae</em> SP6 exhibited higher response to NO-Fe complex FeEx1:2 compared to the control. NO-Fe complex FeEx1:2 was considered highly conductive&nbsp;for efficient H2 production for further research.</div> <b>Citation:</b> Kanwal, F.; Tahir, A.; Tsuzuki, T.; Nisbet, D.; Chen, J.; Torriero, A.A.J. Comparison of Hydrogen Production Efficiency by <i>Rhodopseudomonas palustris MP3</i> and <i>Rhodopseudomonas harwoodiae SP6</i> Using an Iron Complex as an Enhancement Factor. <i>Energies</i> <b>2023</b>, <i>16</i>, 5018. https://doi.org/10.3390/en16135018

  • <div>A document outlining how geoscience data can be useful for natural resource managers and engagement tool for geoscientists interacting with these people.</div><div><br></div>

  • <div>Abstract to present results so far from Upper Darling floodplain EFTF module at Australasian Groundwater Conference (AGC) in Perth</div> This presentation was given at the 2022 Australasian Groundwater Conference 21-23 November (https://www.aig.org.au/events/australasian-groundwater-conference-2022/)

  • <div>As part of the Exploring for the Future Geoscience Knowledge Sharing project, a mobile laboratory was designed and built to help with field work and enhance opportunistic outreach experiences for communities in the areas where field work is taking place. This seminar explores some of the lessons learned from outreach programs planned and evaluated during 2023. The presenters will describe how the craft of stakeholder engagement can be improved by well researched and designed models and engagement exhibits. Outreach not only promotes the field program but also the work an agency does more broadly and can help scientists to better understand the general community who are consumers of data. This in turn can help with future planning of field and other work programs.&nbsp;</div><div><br></div>

  • <div>This document provides a summary of fault parameterisation decisions made for the faults comprising the fault-source model (FSM) for 2023 National Seismic Hazard Assessment (NSHA23).&nbsp;As with the NSHA18, the FSM for the NSHA23 implementation requires the following parameters: simplified surface trace, dip, dip direction, and slip-rate. As paleoseismic data exist for only a few of the approximately 400 faults within the Australian Neotectonic Features database, we use the Neotectonic Domains model as a framework to parametrise uncharacterised faults.</div>